这道题是写在第三张纸上的嘛!
而第一张纸的题显然比第二张纸的题简单,这么来看,这第三张纸的题肯定也比第二张纸的难。
而第二张纸上的题已经足够难了,这第三张纸上只有这么一道题,更加困难,显然就理所应当嘛。
这个逻辑很容易想通嘛!
林晓顿时就不再纠结了,同时也对徐红兵老师肃然起敬。
这种对前后各种题目难度的把控力度真是厉害!
不愧是数学教授。
于是他不再想太多,继续思考起思路。
就这样,一分钟过去,两分钟过去,十分钟过去。
他的头脑中已经掀起了无尽的风暴,神经末梢的突触间高频率地释放出递质,让他的大脑开始了极深层次的运转中。
很快,他灵光一现,如果是多项式的话……
他立马在草稿纸上开始写了起来。
首先将其通项公式写为An-(An-1)-(An-2)=0。
“然后可以利用解二阶线性齐次递回关系式的方法,那么它的特征多项式是……”
【特征多项式为:λ^2-λ-1=0】
【得λ1=1/2(1+√5),λ2=1/2(1-√5)】
【即有An=c1λ1^n+c2λ2^n,其中c1,c2为常数,我们知道A0=0,A1=1,因此……】
【最终解得c1=1/√5,c2=-1/√5。】
【这裏引入素数定理,π(x)=Li(x)+O(xe^(-c√lnx)(x→∞),其中Li(x)=……】
写到这裏,林晓再一次陷入思考中。
接下来,他要尝试结合两者。
只要两者能够结合起来,那么他就完成证明了。
因为,素数定理显然是基于有无穷多个素数的结论下得出的,只要两者能够包容起来,并且区域都属于无穷大,那么即可得出结论。
即证明一个大的,小的那个也就自然而然完成了证明。
但显然,想要将两者结合起来,找到其中的联系点,并不容易,中间还需要进行更加繁多处理。
“需要将它们换个形式,现在两个的关系太远了……”
林晓摩挲着自己的下巴,沉思着如何对它们进行等价变形。
就在这时,他感觉自己肩膀被拍了拍。
“林晓?林晓?”
他回过神,看向了身旁。
是孔华安。
“怎么了?”
林晓问道。
“已经快十二点了,你还不休息吗?”
“啊?都十二点了吗?”
林晓意识到了时间已经很晚了,就算他不休息,但是孔华安也要休息的嘛。
于是他只能暂时放弃继续思考,点了点头道:“嗯,准备休息了。”
随后他将草稿纸合上,去洗漱了,洗漱完毕回到床上后,他心中依然在思考着接下来该如何证明。
不过,渐渐地他还是睡着了。
没办法,他沾床就睡。