毕竟,林晓的顿悟,可是全球都出名了的。
“这又是要顿悟啥了啊……”
“说不定是霍奇猜想呢?林神上课前不是就说这个p-adic理论和霍奇理论有关系嘛。”
“霍奇猜想虽然和霍奇理论有关系,但是霍奇理论包括的内容更大吧?我记得霍奇理论主要讲的是一种利用偏微分方程研究光滑流形M的上同调群的方法,霍奇猜想只是包括在裏面吧?”
“狗子,你连这都知道?别卷啦别卷啦~”
……
正当底下学生们都看着林晓那盯着ppt思考的模样时,林晓终于回过了神。
想起自己此时还在上课,他便回过了神,歉意道:“不好意思,刚才想起了其他事情。”
“咱们继续。”
随后,他便加速地讲起了课,当然,其实讲到这裏他也基本快完了,很快地把拓扑结构讲完,然后按照惯例给他们出了一道题,让他们自己做。
而后,林晓便坐在办公桌上,找出了纸和笔,开始计算起来。
他刚才为什么停顿了两下,便是因为他在这个p-adic理论上,看到了能够帮助他解决当前所面临的霍奇猜想中的一个问题。
“通过引入拟完备空间把算术代数几何转换到p进域上,并应用于伽罗瓦表示,完全可以用来开发一个新的上同调理论……”
“而且完全可以是Motive上同调!”
林晓在纸上写下了数个看起来十分复杂的式子,然后开始尝试着往上同调方向靠去。
但是片刻后,他眉头再次一皱。
“如何证明有一类有限非分歧伽罗瓦扩张L/Kp,其环为O`,剩余域为k`,对其分别存在A`∈H1(E*o′,Z/2(1))?”
“不解决这个问题的话,在伽罗瓦表示的过程上,将存在一定的问题……”
思考片刻后,他索性直接登录了自己的邮箱,然后将他的思路附在上面,然后发给了彼得·舒尔茨。
他当然有彼得·舒尔茨的联系方式。
不过,因为他用的是多媒体上面的电脑,而投影直接投到了黑板的屏幕上面,于是在场的学生们全都看见了。
当看见林晓将他的思路附上去后,在场的学生们都是茫然的。
这是啥玩意儿?
他们除了开头认识一个p-adic,之后就啥都不认识了,而且林晓因为是发给彼得·舒尔茨的,所以他这封邮件也是全英文的,这就更让在场的学生们感到迷茫了。
原来这就是数学顶级大牛平常研究的东西吗?
然而这还没完,当最后,他们看到林晓附上了彼得·舒尔茨的名字时,就更加惊呆了,林晓这封邮件,居然是发给一位菲尔兹奖得主的?
什么叫人脉?这特么的就叫人脉!
而这些,暂时和他们都没有关系,他们只能低下头,继续苦逼地做起了他们的题。
就这样,时间很快的过去了。
下课铃声响起,十分钟之后,上课铃声再度响起,林晓继续讲课。
很快这节课差不多快结束的时候,林晓留给了学生们一段自习的时间,而他则继续进入了邮箱中,惊讶地发现,彼得·舒尔茨居然这么快就回复了。
打开邮件,彼得·舒尔茨是直接发了一封附件过来,他下载了附件之后,便看了起来。
【林教授,你好!很高兴收到你的来信,没想到你对我当初的研究也会产生兴趣,我看完了你的信,想来你现在研究的应该是霍奇猜想吧?
关于你的问题,如何证明这个关于伽罗瓦表示的问题,在最近我研究霍奇理论的时候,恰好有所研究。
首先注意,可以把A`∈H1(E*o′,Z/2(1))设为H1et(E,Z/2)的类,由于其在剩余域中是可逆的,这个群将E上的Z/2参数化……
Br(S′)[2]→Br(S′Kp)[2]=Z/2,到这裏,我们需要继续将其归类为p进域中,然后用数论的方法将其解决,相信在这个问题上,没有比林教授你更多的了。
其实在研究霍奇理论的过程中,我对霍奇猜想也有过思考,不知道你有没有看过2016年罗森松·安德烈亚斯的那篇论文,那裏面对如何获得正确的积分霍奇猜想,做出了推测,我推荐你去看看,总而言之,上同调和霍奇猜想紧密相连,或许Motive,就是解决霍奇猜想最关键的因素!
……】
看完了这篇回信,彼得·舒尔茨基本上没有任何藏私,并且给予了林晓很大的启发。
还有舒尔茨推荐的那篇论文,林晓自然是看过的。
而现在,他已经有了真正解决霍奇猜想的底气了。
至少,是对霍奇猜想的重要阶段性成果。
想到这,他长出一口,然后嘴角一翘。
或许,去国际数学家大会的时候,可以换一个报告主题了?