提问,怎样在自然数集合w中,通过增加一个元素,来得到一个更高阶更巨大的超限序数呢?
乍一想,这好像是无法做到的。
因为在自然数集合w中,已经存在了无穷多个元素。
若想要再加入一个元素,同时还要保持w良序集的性质,这又该往哪里加呢?
先不要思考答案,可以将这个问题翻转一下。
翻转之后即是……能否从全体自然数w中,拿走足够多的元素,用来构造一个更小的无穷序数呢?
只要稍微思考一下,便会知晓这一问题和【希尔伯特旅馆悖论问题】十分相似,或者说大差不差,都属于是对无穷集合的思考与讨论。
总之,即便从全体自然数集合w中拿走任意多的元素,可只要还剩下无穷多个元素,那么w便还是与全体自然数同序数。
既然问题已经翻转过了,那么现在,就将结论也翻转一次吧。
翻转之后便是,往w中添加任意多元素,是毫无意义的。
即便加了,得到的也依然是与自然数集合同等大小的序数集。
所以,现在应该要怎么做呢?
要怎样做才能突破w,到达那更高阶的无穷大层次呢?
很简单,在全体自然数【末尾】,添加一个元素。
可是,全体自然数有无穷多个,要如何操作,才能在其按照常理根本就不可能存在的所谓【末尾】,添加上一个元素呢?
注意,这就是【超限序数】理论中的关键点。
至关重要!
如果能够理解这一关键点,能够理解如何〖在全体自然数末尾添加一个元素〗这一操作。
那么便能十分容易,甚至可以说是水到渠成的完全理解穆苍现今所在的实力层次。
可若是无法理解。
那么,就将穆苍当成一般的无穷大吧。
因为对一切有限数生灵来说,无论哪一种级别的无穷大,都是没有多大区别的,都是永远无法企及的神之层次。
现在,开始脑洞。
先进行一番思考,为何要在全体自然数【末尾】添加一个元素?
原因,就在于想要得到一个比w更大的超限序数,继而去靠近去理解穆苍所在的层次。
按照序数理论中的定义,序数必须是一个可以顺次排序的良序集。
那么想要‘扩大’一连串已然排列好的全体自然数,当然就只能在其【末尾】,进行元素添加操作。
但是按照原先全体自然数w中自带的比大小方法,显然不可能找到任何一个会比全体自然数都大的数。
因此,这就需要略微修改一下序数理论中有关于【序关系】的定义,继而去寻找另一种比大小的方法,使得突破w这一趟探寻,能够继续进行下去。
于是一直这样探寻下去,不断探寻下去。
最终,便可以发现在那【集合理论】体系中,天然就存在着一种比大小方法。
即是【子集】,或可称【包含】关系。
由此,就可以尝试着将自然数,通过使用【集合】的方法,进行一番再定义。
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!喜欢属性无限暴涨,我横压多元请大家收藏:(www.zhaozhi.us)属性无限暴涨,我横压多元枣子读书更新速度全网最快。