第三百一十二章 艾维琳的直觉(下)(1 / 2)

“.......”

长椅上。

看着一脸虚心求教表情的艾维琳,徐云的表情不由有些微妙。

众所周知。

人有三大幻觉:

有人找我、

我能反杀、

他/她喜欢我。

作为一名很有逼数的后世来人。

徐云虽然没有自恋到妹子会和自己表白的地步,但在听到这姑娘有问题要问自己的时候,多少还是下意识的以为对方会冒出些和自己来路有关的话。

结果没想到.......

艾维琳所说的问题,还真是一个问题?

斐波那契数列。

这是一个非常非常有名的数学谜团,在数学和生活以及自然界中都极其有用。

斐波那契数列最早可以追溯到公元7世纪,当时印度有个数学家叫做Gopala。

此人在研究箱子包装物件长度恰好为1和2时的方法数时首先描述了这个数列,也就是下面这个问题:

有n个台阶,你每次只能跨一阶或两阶,上楼有几种方法?

接着这个问题再一次变化,进阶成了更有名的兔子谜团:

假设兔子在出生两个月后就有繁殖能力,一对兔子每个月能生出一对小兔子。

如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?

这个问题最终由斐波那契归纳成了一个数列,也就是:

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377…这样一个无限数列。

它的特点是后一个数字是前两个数字之和,0 1=1,1 1=2,1 2=3往后类推.......

而且用前一个数字来除以后一个数字,就无限接近于黄金分割数0.618。

这个数列用公式表达的话则是Xn=X(n-1) X(n-2),其中X0=0,X1=1。

小说《达芬奇密码》中。

卢浮宫馆长被人杀害陈尸在地板上,当时馆长脱光了衣服,摆成达·芬奇名画维特鲁威人并且留下了一些奇怪的密码。

而这些让人难以琢磨的密码,正是斐波那契数列。

自然界中的蜜蜂家谱、松果叶序甚至瓜果外形都和斐波那契数列有关——2005年曹则贤教授与中国科学院物理研究所合作,利用银核和氧化硅壳研究直径约10微米的微结构中的应力。

最终通过操纵银核和二氧化硅壳构成的无机微结构上的应力,顺利的产生了斐波那契螺旋图案。

数学和物理越深入研究,就越会感叹生命的奇妙。

对了。